World Dream Bank home - add a dream - newest - art gallery - sampler - dreams by title, subject, author, date, places, names

THE BIOSPHERE VARIATIONS

by Chris Wayan, 2006-10

Orbital photo of Serrana, a world-building experiment; a hybrid of Earth and Mars with small, isolated seas and extensive deserts and savanna. The Biosphere Variations is a set of five world-models so unlike Earth most biologists would write them off as havens for life--prematurely.

The series is a response to Peter Douglas Ward's book "Rare Earth," which claims worlds with microbial life may be common but multicellular life is rare, and intelligent life vanishingly rare. Ward lists all Earth's quirks that influenced our unique path of evolution, then demands other worlds match every one. This approach is common in exobiology, but specious. Even if Earth were absolutely ideal for life (patently untrue) and no other path was possible (fantastically unlikely), a world may be unearthly in several ways that effectively cancel out! For example, here are just some of the factors affecting surface temperature

Such conflicting factors widen and blur the popular concept of a predictable orbital zone where planets can have surface water (or, for that matter, a range of acceptable planet-sizes, or atmospheric pressures, or solar-system structures). The silliness of the concept can be illustrated best by a simple thought-experiment...

Orbital photo of Lyr, an experimental world-model, over twice Earth's diameter, six times Earth's air pressure, and 15 times Earth's water. 95% of the surface is sea, 5% land.

SWAP VENUS AND MARS

Move Mars where Venus is now, and put Venus is Mars's place, or perhaps a bit further out, toward the inner edge of the asteroid belt. Assume they were there from the beginning, and estimate their current surface temperatures! You'll find that life on Hot Mars probably would develop early, when the sun was cooler. Life would suck up CO2 and keep the planet from runaway greenhousing. Hot Mars might still end up thin-aired and dry, with small seas at most, and maybe just a planetary desert... but with sparse life. Thin air can be a virtue!

Meanwhile, our Cool Venus, swathed in a thick atmosphere, would be warm enough for life but lacks enough water for large seas. With the air so rich in CO2 and water as the limiting factor, sparse plant life might be all we'd get, but who knows? CO2-tolerant oxygen-breathers might evolve--Terran life's adapted to stranger chemistries.

And of course, our mutant worlds would have somewhat different chemistries--Venus, as an outer world, would have been richer in water; seas would dissolve much of the CO2, leaving a cool world, but with true seas. How cool? Even if every molecule of CO2 were scrubbed out of Venus's atmosphere, it has four Earth atmospheres of other gasses--and the seas add water vapor, a strong greenhouse gas. So would our Cool Venus really be cool--a big, wet Mars? Or would it greenhouse up to Earthlike temperatures? You see how quickly such questions tangle into complexity.

One way to reduce the problem to manageable simplicity is to declare all these contributing factors are beyond us right now, and just assume that size, temperature, and water-content distributions of bodies in space are all pretty smooth curves--more small ones, more cold ones, with more water ice in the cool part of the range--then guesstimate what proportion of bodies look friendly for life (not specifying how they got that way, or even if they're moons or planets). Anyone out there care to try? Way simpler than Fermi's formulation! And it's intriguing, just how big the livable parts of these curves are.

Orbital photo of the moon Oisin; 85% Europan ice-covered sea, 15% Marslike desert continents; tenuous, cloudless air.

TEMPERATURE

Big rocky planets well outside the classic liquid-water zone can have dense air warming them quite nicely. My example, Lyr, not only has extensive life on its small continents; it has a Europa-like moon, Oisin, whose thinly ice-covered sea lets light penetrate, so it too harbors complex life--another model Ward ignores.

I've started an even colder world--Xanadu is a somewhat larger, warmer, wetter, older Titan. Its ethane seas have had time--in their cool, leisurely way--to evolve complex life.

I've finished an eccentric little Marslike world sweeping in and out of the liquid zone, Serrana; high tidal stress led to active tectonics, high CO2 levels, and livable temperatures. Very livable--in fact, many different kinds of life have crawled out of its many shallow seas.

I'm now working in another model Douglas dismisses as impossible, with seas from 50-100 degrees Celsius (hot to boiling). Even on Earth, life can thrive in this temperature range; there's no reason to assume a whole ecology couldn't develop in it. Maybe I'll call it Sauna or Jalapeña or Blisteria or Ovenia or...Capsica

HOT JUPITERS

Ward also assumes that Pegasian planets (gas giants close to their suns) would sweep away Earthlike planets as the big ones spiral in--or keep Earths from evolving at all! He's overlooked at least two scenarios I explore. First is a true hot giant nearly double Jupiter's mass, with two moons supporting life: Earthlike Pegasia and stark little Tharn. Ward never mentions moons of Pegasian worlds--he writes off their whole solar systems prematurely. Sure, gas giants may destroy smaller planets--instead, you get families of huge moons! Gravity giveth, and gravity taketh away.

My second Pegasian scenario isn't a classic "hot Jupiter", but something likely to be even commoner (just indetectable at the moment)--a "tepid Neptune" (Lyr again). It's bigger and further out than our rocky planets, but smaller, closer and warmer than our gas giants. A world between.

Orbital photo of Tharn, a moon larger than Mars with an atmosphere, shallow lakes, and life, orbiting a gas giant twice Jupiter's mass.

WATER

A third assumption is that life needs an Earthlike amount of water. I present one wet scenario I think is common, Lyr again, with 15 times our water. I haven't bothered to build a landless world with seas up to 100 miles deep--it's the one time I'll concede Ward may be right. A world-sea with no land at all will grow mineral-poor, with sparse life like our deep seas--and though multicellular life may develop, even intelligent life, how far can it progress in that limited environment? No solids but living bodies--anything heavier than water (such as bone) drops into the abyss, its minerals lost forever to the sunlight surface. It makes even my icy Europan moon Oisin sound good--at least its world-sea has shallows, reefs... rocks!

But my real objection to world-seas is esthetic. They're no fun to sculpt. Slather a globe blue and you're done. No, the real potential--both exobiologic and esthetic--is in dry models! Pegasia (1/3 our water) and Serrana, (1/15th), and my terraformed version of Mars (in the earlier series Futures) show how little water it takes to sustain a biosphere--as long as it's warm enough to be liquid! Last and most extreme is the desert moon Tharn, with just 0.1%-0.2% of our water. Yet even Tharn STILL has small seas--and abundant life. Why? Well, liquids spread. Even small volumes can create significant surface areas, and it's surface water where most life is--and that generates rain.

Aside from world-seas so deep they're truly landless, I'm slowly coming to the conclusion water levels hardly matter. Most worlds with surface temperatures allowing water at all will have both land and sea. And life! Temperature, not chemistry or water content, is the key factor.

And of course what we want isn't really water but surface liquid in which life can evolve; not quite the same thing! Other liquids might do the job. Xanadu is a somewhat larger, warmer, wetter, older Titan. Its ethane seas have had time--in their cool, leisurely way--to evolve multicellular life. Unexplored as yet is the idea of a cool world with ammonia seas.

Orbital photo of Pegasia, a moon nearly the size of Venus, with a dense atmosphere, shallow seas, and life, orbiting a gas giant.

SMALL SUNS

A fourth assumption: Peter Ward Douglas writes off the vast majority of stars because they're too small and dim. To stay warm, planets would have to orbit them so close that tidal forces would stop or slow their spin. Roasting dayside, freezing nightside!

But as I've argued above, livable planets can orbit a star further out than he thinks if they have denser atmospheres, or liquids other than water. And even if we restrict ourselves to close-in worlds, spin depends on more than tidal drag: chance impacts, a world's mass (big worlds tend to spin fast and resist tidal drag much longer), and whether it IS a planet--many large moons will always rotate relative to their sun, since they always face their planet instead. Example: Pegasia.

Nor must every tidelocked world be half-charred, half-frozen, with only a narrow ring of tolerable temperatures. In the real world, orbits are elliptical; libration and nutation mean a tidelocked world may have quite broad regions with diurnal cycles. And denser atmospheres flatten the temperature gradient between day and night; Venus, though slow-spinning, still has very even temperatures. I'm building an example now of a livable tidelocked eccentric: Libratia.

In short: we can't write off small stars, and they're everywhere. So all of my Biosphere Variations have smaller, cooler suns than Sol; the only variation here is how much smaller.

COMET SHIELDS?

A fifth assumption is that any well-made solar-system needs a Jupiter as a shield against comet-strikes. I'm growing skeptical of this, too. After all, Jupiter's gravity disturbs the outer system, thus causing the very comets it supposedly shields us from. Besides, it's now looking like we need some comets--our water may come from early bombardment, and I just saw a study claiming the rise of multicellular life coincides with a large increase in meteoric impacts on Earth! A certain number of small catastrophes may be good for evolution.

A system with no planets bigger than Neptune (or with its only giant hugging the sun) may have more catastrophic impacts but not fatally more, or have familiar cratering rates, or be more peaceful than our system, and we don't know what rates are healthy, either. Nor are we likely to have answers until we've thoroughly explored a large sample of solar systems. But I'll stick my neck out. I predict multicellular life, interesting life, will be quite common; 5% to 50% of all solar systems.

CONCLUSIONS?

I've convinced myself that many different kinds of worlds are possible biospheres; Earth is not the only path. The question is, to what extent can I convince you?

Well, anyway. Five world-models, three more under construction. Enjoy your trips! Don't forget to write--particularly if you think of other intriguing biosphere variations.

SERRANA
Cross Earth with Mars--
How low can you go?
LYR
Not a hot Jupiter, but...
a tepid Neptune?
orbital photo of Serrana orbital photo of Lyr
OISIN
a giant Europa
walking on thin ice
THARN
a living Marslike moon
with just 0.1% of Earth's water
PEGASIA
a huge Earthlike moon
of a hot gas giant
OPEN FOR SETTLEMENT!
orbital photo of Oisin orbital photo of Tharn orbital photo of Pegasia
SERRANA's a near-Martian little world circling a smaller, cooler star. Such worlds, with far less water and thinner air, should statistically be far more common than Earth. Are they viable? RARE EARTH says no. RARE EARTH is wrong. The many shallow seas of Serrana spawn wildly diverse life-forms... and multiple intelligent species, forming a cooperative civilization. Serrana raises the question: is our unispecies civilization the norm, or are we the freaks?

LYR has a mass seven times Earth's and is further from its sun. Not a hot Jupiter, but a tepid mini-Neptune. These worlds, too, may be quite common--after all, we have two worlds only twice Lyr's mass in our own solar system. Dense atmosphere, deep seas... but does that preclude continents and their fertilizing minerals, land animals, and technological civilizations? Nope. We forget big worlds are so damn big. Lyr is 95% ocean--but that last 5% is nearly as much land as Earth!

OISIN's a huge, ice-covered moon of Lyr, looking like a warmer, larger Europa with small Martian uplands rising from a frozen sea. But the ice skin is mere yards thick, like our Arctic Sea--algae flourishes on the underside, feeding a complex life-web. Rich reef communities teem in the rocky shallows, algae grazers swim the open sea, and weird vent communities dot the deeps.

PEGASIA's a nearly Venus-sized moon of a hot super-Jupiter. It's tide-locked with its primary, so one side has a huge "moon" permanently overhead, sometimes sunlit, sometimes glowing dim red, radiating so much infrared it substantially warms that hemisphere of Pegasia. Rather than climate belts, Pegasia has a fascinating pattern of nodes of hot and cold. Not just a north and south pole, but an east and west pole, and an in and out pole. With only 25% of Earth's water, Pegasia still has a shallow world-sea studded with continents. My most Earthlike model yet--and it's not even a planet!
By the way, I'm looking for plausible inhabitants of Pegasia. Invent an intelligent species and win your own continent! You'll have to get there on your own though, the deal with NASA is on hold again. Cutbacks.

THARN is a smaller, Mars-sized moon orbiting the same hot gas giant as Pegasia. It's a study in extremes--in drought (0.2% of Earth's water) and thin air (1/4 atmosphere on most of the surface). Tharn's warmer than Mars, but that's about all. Life? Perhaps you'd accept oases--but how about savannas, rainforests, and seas? Yes, seas! And abundant life. Tharn's proof how little water is needed--if the temperature's right.

UNDER CONSTRUCTION orbital photo of Xanadu: a wetter Titan with methane- or ethane-based life

XANADU will be an experiment in non-water-based life. A slightly larger, warmer, "wetter" version of Titan, Xanadu has identical geography--except that its dark basins aren't dry lakebeds but hydrocarbon seas. Ethane rivers carve canyons through continents of dirty ice... what would life be like? orbital photo of Capsica: a hot world

CAPSICA explores life in the hot half of the Goldilocks Zone. Well, the middle at least: average temperature 323 K, 50 C, 122 F. See? Juuuuust right! Halfway between freezing and boiling, what could be more comfortable? So far, my only firm prediction about a world of scalding-hot tropical seas (and body temperatures) is this--Capsican scientists know intelligent life will never evolve on frost-damaged worlds like Earth! orbital photo of Libratia: a tidelocked but eccentric world with large habitable zones

LIBRATIA will show how a tidelocked world with even modest orbital eccentricity has a huge zone with diurnal cycles--larger than the day or night zones, in fact! And the whole dayside is habitable. Because warm often means wet. Evaporation is high, warm air holds more moisture, cloud layers can be dense, and rains heavy under those shielding clouds. Welcome to the Carboniferous! orbital photo of Kakalea, an Earthlike world with mostly dry continents

KAKALEA tours a world so Earthlike by the numbers that it should be ideal. But through sheer geographical bad luck, its continents are mostly dry and barren--wrong latitude, wrong shape, mountains blocking storm tracks...

Three related sets of world-models: Tilt! -- Futures -- Caprices -- Home page for all four sets: Planetocopia



World Dream Bank homepage - Art gallery - New stuff - Introductory sampler, best dreams, best art - On dreamwork - Books
Indexes: Subject - Author - Date - Names - Places - Art media/styles
Titles: A - B - C - D - E - F - G - H - IJ - KL - M - NO - PQ - R - Sa-Sh - Si-Sz - T - UV - WXYZ
Email: wdreamb@yahoo.com - Catalog of art, books, CDs - Behind the Curtain: FAQs, bio, site map - Kindred sites